
Hexahedral Mesh Generation for Biomedical
Models in SCIRun

Jason F. Shepherd1 and Chris R. Johnson2

1 Scientific Computing and Imaging Institute, Salt Lake City, UT
jfsheph@sci.utah.edu

2 Scientific Computing and Imaging Institute, Salt Lake City, UT
crj@sci.utah.edu

Biomedical simulations are often dependent on numerical approximation
methods, including finite element, finite difference, and finite volume methods,
to model the varied phenomena of interest. An important requirement of the
numerical approximation methods above is the need to create a discrete de-
composition of the model geometry into a ‘mesh’. Historically, the generation
of these meshes has been a critical bottleneck in efforts to efficiently gener-
ate biomedical simulations which can be utilized in understanding, planning,
and diagnosing biomedical conditions. In this paper we discuss a methodology
for generating hexahedral meshes for biomedical models using an algorithm
implemented in the SCIRun Problem Solving Environment. The method is
flexible and can be utilized to build up conformal hexahedral meshes ranging
from models defined by single isosurfaces to more complex geometries with
multi-surface boundaries.

1 INTRODUCTION

Advanced techniques in biomedical computing, imaging, and visualization are
changing the face of biology and medicine in both research and clinical prac-
tice. The goals of biomedical computing, imaging and visualization are mul-
tifaceted. While some images and visualizations facilitate diagnosis, others
help physicians plan surgery. Biomedical simulations can help to acquire a
better understanding of human physiology. Still other biomedical computing
and visualization techniques are used for medical training. Within biomedical
research, new computational technologies allow us to “see” into and under-
stand our bodies with unprecedented depth and detail. As a result of these
advances, biomedical imaging, simulation, and visualization will help produce
exciting new biomedical scientific discoveries and clinical treatments.

Biomedical simulations are dependent on numerical approximation meth-
ods, including finite element, finite difference, and finite volume methods, to



2 Jason F. Shepherd and Chris R. Johnson

model the varied phenomena of interest. An important requirement of the
numerical approximation methods above is the need to create a discrete de-
composition of the model geometry into a ‘mesh’. The meshes produced are
used as input for computational simulation, as well as, the geometric basis for
which many of the visualization results are displayed. Historically, the gen-
eration of these meshes has been a critical bottleneck in efforts to efficiently
generate biomedical simulations which can be utilized in understanding, plan-
ning, and diagnosing biomedical conditions.

The most common types of elements utilized in numerical approximations
are triangles or quadrilaterals in two-dimensions and tetrahedral or hexahe-
dral elements in three-dimensions. To reduce the amount of time to prepare a
model, automated meshing algorithms have been developed for creating tri-
angular, quadrilateral, and tetrahedral meshes for a very generalized class of
geometries. In the case of tetrahedral meshing, algorithms are available that
can generate greater than 400 thousand tetrahedra per minute [17]. How-
ever, automated hexahedral mesh generation algorithms are available for a
more limited class of geometries. Because of the limited class of geometries
for which hexahedral meshes can be built, a significant amount of time in gen-
erating a hexahedral mesh is devoted to decomposing (cutting up) a model
into pieces for which a known hexahedral mesh generation algorithm will suc-
ceed. The processing of geometry for creating a hexahedral mesh can take
several months for a generalized model, whereas tetrahedral meshes can often
be created in a matter of hours or days [27, 28].

In spite of the limited availability of an automated hexahedral mesh gener-
ation algorithm, hexahedral meshes are sometimes preferred over tetrahedral
meshes in certain applications and situations for the following reasons:

1. Tetrahedral meshes typically require 4-10 times more elements than a
hexahedral mesh to obtain the same level of accuracy [26, 7].

2. In some types of numerical approximations (i.e. high deformation struc-
tural finite element analysis with linear elements), tetrahedral elements
will be mathematically ‘stiffer’ due to a reduced number of degrees of
freedom associated with a tetrahedral element [3, 6]. This problem is also
known as ‘tet-locking’.

Hexahedral mesh generation can be difficult and time-consuming. In this
paper, we will demonstrate a method for generating hexahedral meshes using
a methodology similar to methods currently used for generating isosurfaces in
volumetric image data. This algorithm utilizes a theory for hexahedral meshes
outlined in [22], and implemented in the SCIRun Problem Solving Environ-
ment [1, 11, 19]. We will describe the algorithm utilized and show how to
develop single surface and multi-surface hexahedral meshes. We will demon-
strate several example hexahedral meshes generated with this algorithm.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 3

2 BACKGROUND

2.1 SCIRun Background

The methods discussed throughout the remainder of this paper have been
developed in the SCIRun Problem Solving Environment (PSE) [1, 11, 19].
SCIRun is a problem solving environment that allows the interactive con-
struction, debugging, and steering of large-scale, typically parallel, scientific
computations. SCIRun provides a component model, based on dataflow pro-
gramming, that allows various computational components and visualization
components to be connected together. SCIRun can be envisioned as a “com-
putational workbench,” in which a scientist can design and modify simulations
interactively via a component-based visual programming model. SCIRun en-
ables scientists to modify geometric models and interactively change numer-
ical parameters and boundary conditions, as well as to modify the level of
mesh adaptation needed for an accurate numerical solution. As opposed to
the typical “off-line” simulation mode - in which the scientist manually sets
input parameters, computes results, visualizes the results via a separate vi-
sualization package, then starts again at the beginning - SCIRun “closes the
loop” and allows interactive steering of the design, computation, and visu-
alization phases of a simulation. An example biomedical simulation utilizing
the SCIRun environment is shown in Figure 1.

2.2 Algorithmic Background

As imaging and scanning techniques continue to improve for applications in-
cluding biomedical imaging (e.g., CT, MRI, confocal and light microscopy,
etc.), geologic imaging, and mechanical scanning, there has been substantial
effort placed in generating computer models that can be visualized and ma-
nipulated. Traditionally, the Marching Cubes algorithm [16] has been utilized
to convert volumetric image data into isosurfaces that can be viewed and ma-
nipulated. However, while suitable for visualization, in many cases the meshes
resulting from a Marching Cubes algorithm are not of sufficient quality for
use with numerical techniques such as finite element, finite volume, or finite
differences methods.

Since the boundary of a hexahedral mesh is a quadrilateral mesh, we can
utilize a methodology which is similar to the marching cubes method [16] to
create quadrilateral isosurfaces. The hexahedral theory which supports this
methodology is outlined in [22] and the algorithm for generating these quadri-
lateral isosurfaces was implemented as a new module in SCIRun [1, 19]. For
simplicity, the algorithm takes a set of triangles describing the isosurface along
with a predefined hexahedral mesh that intersects the isosurface (typically a
bounding box surrounding the isosurface with a regular structured mesh). The
algorithm will be described in more detail in the next section.



4 Jason F. Shepherd and Chris R. Johnson

Fig. 1. The SCIRun PSE showing the module network (middle), the visualization
window (right). Researchers can select UI (user interaction) buttons on many of the
modules that allow control and feedback of parameters within a particular module
(left).

3 SINGLE SURFACE METHODS

Because most isosurfacing algorithms generate triangle meshes to represent
the isosurfaces, an algorithm which will convert the triangle surfaces to hexa-
hedral meshes is a very useful algorithm in creating models which can be used
in computation. Additionally, numerous algorithms exist for creating triangle
meshes and most models in use for computer visualization also utilize triangle
meshes making an algorithm that utilizes a triangle mesh as a starting point is
readily flexible for a wide-array of preexisting models. The hexahedral meshes
shown in this section were generated using the SCIRun software [1, 19] with
a module (the SCIRun module name is InsertHexSheetAlongSurface) created
for inserting hexahedral sheets into existing hexahedral meshes given a tri-
angle mesh that partitions the hexahedral mesh into two regions (triangle
meshes that partition the hexahedral mesh into more than two regions will be
discussed in a later section). The basic algorithm takes the following form:

Given an existing hexahedral mesh and a triangle mesh representing the
shape of the hexahedral sheet to be inserted, do the following:



Hexahedral Mesh Generation for Biomedical Models in SCIRun 5

Fig. 2. A hemispherically-shaped triangle mesh (the boundary of the triangle mesh
is shown in black) is placed in a hexahedral grid. The hexahedra intersected by the
triangle mesh are shown in yellow, while ‘Side1’ is drawn in green and ‘Side2’ is
shown in blue.

1. Locate all of the hexahedra that are intersected by one or more triangles
in the triangle mesh. A kdtree containing all of the triangles is utilized to
improve the efficiency of this search. If there is a triangle in the vicinity of
a given hexahedron, each edge of the hexahedron is tested for intersection
with the triangles in the region. Each of the intersected hexes is marked
as being intersected.

2. Separate the hexahedra into three groups: Side1, Side2, and Intersected.
Starting with an unmarked hexahedron (i.e., a nonintersected hexahe-
dron from the previous step), use a flood-fill algorithm to group all of the
hexahedra that are connected to this hexahedron and not marked (i.e.,
intersected by a triangle). This group will be known as ‘Side1’. All of the
marked, or intersected, hexahedra are placed in a second group, known as
‘Intersected’, and the remaining hexahedra are placed in a third group,
known as ‘Side2’. An example of this process is shown in Figure 2 where
a hemispherically-shaped triangle mesh is place in a hexahedral grid. The
boundary of the triangle mesh is shown in black, and the ‘Intersected’
hexes are drawn in yellow. ‘Side1’ is drawn in green and the remaining
hexahedra are placed in ‘Side2’ (shown in blue).

3. Collate the ‘Intersected’ hexahedra with either ‘Side1’ or ‘Side2’ and insert
two hexahedral sheets between these two groups of hexahedra. The ‘Inter-
sected’ hexahedra are subsequently added to either ‘Side1’ or ‘Side2’, and
two sheets of hexahedra around these two groups. For the example high-
lighted in Figure 2, depending on which side the intersected hexahedra
are grouped, one of the meshes shown in Figure 3 will result.
The hexahedral sheets are inserted by (refer to Figure 4):



6 Jason F. Shepherd and Chris R. Johnson

a. First, determining the quadrilateral boundary between the two sides
of the mesh,

b. separating the two meshes by shrinking the elements at this interface,
c. then, for each node on the separated boundary, project a new node

to the triangle mesh. A map to each node is retained by both sides of
the mesh, and once all of the projected nodes have been created on
the boundary, the hexahedral connectivity for the two sheets can be
developed by using the quadrilaterals on the interface boundary from
both sides and the map to each of the newly projected nodes.

4. Export the two new groups of hexahedra.

The shrinking process often forces some element inversion, so it is neces-
sary to smooth the mesh to obtain the mesh quality desired. In addition, the
projection of the nodes to the triangle mesh often results in nonuniform sizing
of the quadrilateral elements on the boundary. This is also remedied using a
smoothing operation.

Smoothing on these meshes was accomplished in one of two ways. The first
option is to use the MESQUITE [18, 5] suite of smoothing algorithms avail-
able from a mesh smoothing module implemented in SCIRun [1, 19]. These
smoothers include Laplacian smoothing, a hybrid smoothing/optimization al-
gorithm known as Smart Laplacian [9], and a mesh optimization algorithm for
improving the ‘shape’ metric, called Shape Improvement Optimization [14]. In
SCIRun, these smoothing/optimization algorithms are available for smooth-
ing quadrilaterals or hexahedral meshes (as well as triangle and tetrahedral
meshes).

Fig. 3. Slightly different meshes result depending on which side the intersected hexes
are grouped. The image on the left shows the resulting mesh after sheet insertion
if the intersected hexes are placed with Side1’s hexes, while the image on the right
has the intersected hexes being grouped with Side2.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 7

The second option is to export the mesh created in SCIRun, and load it into
the CUBIT Mesh Generation Toolkit [8]. CUBIT has the mesh smoothing and
optimization algorithms listed above, along with some additional smoothing
algorithms, including centroidal area smoothing [12], condition number opti-
mization [13], and untangling [13, 24, 15, 10]. Additionally, CUBIT optionally
allows smoothing to occur on a focused-set of elements that can dramatically
reduce the amount of time needed for optimization of specific hexahedral el-
ements.

All mesh quality results are reported using the scaled Jacobian metric as
calculated by the Verdict library of mesh quality metrics [25].

4 SINGLE SURFACE EXAMPLES

In this section, we demonstrate the methods outlined in the previous section
to generate several hexahedral meshes for models consisting of single surfaces.
We demonstrate geometric conformity to the original geometry, and highlight
the resulting hexahedral element quality inherent with this methodology.

4.1 Hand Model

The original triangle mesh for the hand model is provided courtesy of INRIA
by the AIM@SHAPE Shape Repository (http://shapes.aim-at-shape.net/index.php).

The hexahedral mesh of the hand model, shown in of Figure 5 contains
202,974 hexahedra and was generated in SCIRun and optimized in CUBIT.

Fig. 4. Image A shows the shrunken hexahedra with the triangle mesh shown in
between the hexahedra. Image B shows a newly projected node to the triangle mesh
for each node on the boundary of the shrunken mesh (note that a single node on
the triangle mesh corresponds to one node on each of the shrunken boundaries).
Image C shows the newly created hexahedron by mapping the quadrilaterals on
the boundary to the appropriate nodes (recently projected) on the triangle surface
mesh.



8 Jason F. Shepherd and Chris R. Johnson

The mesh was generated by using the process described in the heading to
this section, namely first creating a regular grid of hexahedra that was 5%
larger than a tight bounding box around the hand geometry. The size of the
elements was uniform throughout the grid, and was chosen to be roughly the
same size as the elements in the original triangle mesh. To obtain a sharper
boundary near the wrist, the original bounding box was moved slightly to
allow the original triangle mesh to extend past the boundary of the regular
hexahedral grid. Two hexahedral sheets were then placed in the grid using
the original triangle mesh as a guide.

Smoothing and optimization of this mesh was completed in CUBIT [8].
The quadrilateral mesh on the boundary was smoothed with a centroidal-
area smoother to improve the quality of the surface mesh. After smoothing the
quadrilaterals, the boundary nodes were fixed and the hexahedral elements
were smoothed with a Laplacian smoother, followed by a mesh untangling
operation on any hexahedra that may have been inverted by the Laplacian
smooth. Upon completion of the Laplacian smoothing operation, an optimiza-
tion algorithm to improve the condition number of each of the elements was
performed to give the final results shown in Figure 6.

Figure 7 displays the geometry for both the original geometry and the
hexahedral mesh (the facets of the original triangle mesh are shown in red
(on the left) and the facets from the hexahedral mesh are shown in green (in
the middle)). In this model, the geometric fidelity of the hexahedral mesh is
very satisfactory as evidenced by the completely mottled appearance of the
overlapping facets shown in the left image of both figures. The solid red area

Fig. 5. Front and back view of the hexahedral mesh of the hand. The mesh contains
202,974 elements.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 9

Table 1. Table indicating volume changes resulting from conversion of the original
triangle mesh to a hexahedral mesh for the hand model.

Volume (Triangle Mesh) Volume(Hexahedral Mesh) Difference Percent Change

0.430513 0.416846 -0.01367 -3.17%

at the base of the wrist indicates the region where the triangle mesh was
allowed to extend past the original hexahedral grid. Table 1 gives a listing of
the original volume enclosed by the triangles and the final volume enclosed
by the hexahedral mesh. The volume in the hexahedral mesh is 3.17% smaller
than the volume enclosed by the original triangles. The bulk of the volume
lost is due to the region at the wrist of the model where the triangle mesh
was extended past the hexahedral mesh.

4.2 Mouse Model

The original triangle mesh was generated from CT data and was provided
courtesy of Jeroen Stinstra from the Scientific Computing and Imaging Insti-
tute at the University of Utah.

The hexahedral mesh of the mouse model, shown in of Figure 8 contains
74,828 hexahedra and was generated in SCIRun and optimized in CUBIT.
The mesh was generated first creating a regular grid of hexahedra that was
larger than a tight bounding box around the mouse geometry. The size of

Fig. 6. Distribution of element quality for the hand model.



10 Jason F. Shepherd and Chris R. Johnson

Fig. 7. Geometry generated from original triangle facets shown in red (on the left),
and the geometry generated from the hexahedral facets is shown in green (in the
middle). An image where both sets of facets are overlapped is given on the right to
give an indication of the overall geometric fidelity of the hexahedral mesh.

the elements within this mesh was chosen based on a percentage of length of
each of the sides of the bounding box. The element size is uniform throughout
the model, which is not conducive to high element quality near the feet and
tail, but these locations were deemed unimportant for subsequent numerical
analysis. Two hexahedral sheets were then placed in the hexahedral grid using
the original triangle mesh as a guide. After the sheet insertion process, the
hexahedral elements exterior to the mouse model were discarded.

Fig. 8. Hexahedral mesh of a mouse generated from CT data. The mesh contains
74,828 elements.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 11

Fig. 9. Original triangle mesh of the mouse model.

Mesh quality optimization for this model was performed in CUBIT, where
the quadrilateral mesh on the boundary was smoothed with a centroidal-
area smoother to improve the quality of the surface mesh. Because of the
nonsmooth nature in some areas of the original triangle mesh (shown in Fig-
ure 9), some additional quadrilateral smoothing was done on some of the
quadrilaterals whose nodes collected in areas of discontinuity of the original
triangle mesh. After obtaining a reasonable quadrilateral mesh, the boundary
nodes were fixed and the hexahedral elements were smoothed with a Lapla-
cian smoother, followed by a mesh untangling operation on any hexahedra
that may have been inverted by the Laplacian smooth. Upon completion of
the Laplacian smoothing operation, an optimization algorithm to improve
the condition number of each of the elements was performed to give the final
results shown in Figure 10.

Figure 11 displays the geometry for both the original geometry and the
hexahedral mesh (the facets of the original triangle mesh are shown in red (up-
per left) and the facets from the hexahedral mesh are shown in green (upper
right)). In this model, the geometric fidelity of the hexahedral mesh is satisfac-
tory with a fair amount of mottling over the entire mouse, although evidence
of the original segmentation process is evident by the layering seen in the mot-
tling. Some additional refinement around the arm may also be necessary to
remove a blending in this region, as well (note the area of green surrounding
the joint near the top of the arm). Additionally, utilizing a smoother initial
triangle mesh, or presmoothing the triangle mesh, would enable additional
geometric fidelity to be obtained. Table 2 gives a listing of the original volume
enclosed by the triangles and the final volume enclosed by the hexahedral
mesh. The volume in the hexahedral mesh is 0.17% larger than the volume
enclosed by the original triangles with the additional volume gained mainly
in the concave regions near the arms and legs.



12 Jason F. Shepherd and Chris R. Johnson

4.3 Bunny Model

The original triangle mesh for the bunny model was generated by John
Schreiner using the ‘afront’ software [20].

The hexahedral mesh of the bunny model, shown in of Figure 12 contains
125,183 hexahedra and was generated in SCIRun and optimized in CUBIT.
The mesh was generated first creating a regular grid of hexahedra that was 5%
larger than a tight bounding box around the bunny geometry. The size of the
elements within this mesh was chosen using a size from the original triangle
mesh in an area with a moderate amount of detail. Two hexahedral sheets
were then placed in the hexahedral grid using the original triangle mesh as a
guide, and the mesh was then exported from SCIRun and translated into a
file format readable by CUBIT.

Fig. 10. Distribution of element quality for the mouse model.

Fig. 11. Geometry generated from original triangle facets shown in red (upper left),
and the geometry generated from the hexahedral facets is shown in green (upper
right). An image where both sets of facets are overlapped is given on the bottom to
give an indication of the overall geometric fidelity of the hexahedral mesh.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 13

In CUBIT, centroidal-area smoothing was used on the quadrilateral bound-
ary. After smoothing the quadrilateral mesh, the boundary nodes were fixed
and the hexahedral elements were smoothed with a Laplacian smoother, fol-
lowed by a mesh untangling operation on any hexahedra that may have been
inverted by the Laplacian smooth. Upon completion of the Laplacian smooth-
ing operation, an optimization algorithm to improve the condition number of
each of the elements was performed to give the final results shown in Figure
13.

Figure 14 displays the geometry derived from the facets of the original
triangle mesh and the hexahedral mesh (the facets of the original triangle
mesh are shown in red (upper left) and the facets from the hexahedral mesh
are shown in green (upper right)). In this model, the geometric fidelity of the
hexahedral mesh is reasonable with a fair amount of mottling over the entire
bunny, although evidence of blending by the hexahedral elements is evident
in areas of higher curvature, specifically around the neck, tail, ear, and thigh

Table 2. Table indicating volume changes resulting from conversion of the original
triangle mesh to a hexahedral mesh for the mouse model.

Volume (Triangle Mesh) Volume(Hexahedral Mesh) Difference Percent Change

16.845 16.873 0.028 0.17%

Fig. 12. Hexahedral mesh of the bunny model, containing 125,183 elements



14 Jason F. Shepherd and Chris R. Johnson

Table 3. Table indicating volume changes resulting from conversion of the original
triangle mesh to a hexahedral mesh for the bunny model.

Volume (Triangle Mesh) Volume(Hexahedral Mesh) Difference Percent Change

753507.7 753918.2 410.5 0.05%

of the rabbit. Some refinement of the original grid in these regions should
improve the geometric fidelity of the hexahedral mesh. Table 3 gives a listing
of the original volume enclosed by the triangles and the final volume enclosed
by the hexahedral mesh. The volume in the hexahedral mesh is 0.05% larger
than the volume enclosed by the original triangles with the additional volume
gained mainly in the concave regions near the legs, tail and neck.

4.4 Dragon Model

The original triangle mesh for the dragon model was generated by John
Schreiner using the ‘afront’ software [20].

The hexahedral mesh of the dragon model, shown in two separate im-
ages in Figure 15 contains 465,527 hexahedra and was generated in SCIRun
and optimized in CUBIT. The mesh was generated first creating a regular
grid of hexahedra that was 5% larger than a tight bounding box around the
dragon geometry. The size of the elements within this mesh was chosen using
a comparable size from the original triangle mesh in an area with a moderate

Fig. 13. Distribution of element quality for the bunny model.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 15

Fig. 14. Geometry generated from original triangle facets shown in red (upper left),
and the geometry generated from the hexahedral facets is shown in green (upper
right). An image where both sets of facets are overlapped is given at the bottom to
give an indication of the overall geometric fidelity of the hexahedral mesh.

amount of detail (the original trimesh of the dragon is shown in Figure 16).
This size was made uniform throughout the original hexahedral grid.

Two hexahedral sheets were then placed in the hexahedral grid using the
original triangle mesh as a guide. After placement of the new sheets, the
hexahedral elements exterior to the dragon model were discarded.

Mesh optimization for the mesh was performed in CUBIT using a centroidal-
area smoothing on the boundary, followed by Laplacian smoothing for all inte-
rior nodes was performed. This was followed by a mesh untangling operation
on any hexahedra that may have been inverted by the Laplacian smooth,
and, finally, mesh optimization to improve the condition number of each of
the elements was performed to give the final results shown in Figure 17.

Figure 18 displays the geometry derived from the facets of the original
triangle and hexahedral meshes (the facets of the original triangle mesh are

Fig. 15. Two views of the hexahedral mesh of the dragon model. The mesh contains
465,527 elements.



16 Jason F. Shepherd and Chris R. Johnson

Fig. 16. Original triangle mesh of the dragon model.

Fig. 17. Distribution of element quality for the dragon model.

shown in red (on the left) and the facets from the hexahedral mesh are shown
in green (in the middle)). In this model, the geometric fidelity of the hexa-
hedral mesh is reasonable over the entire model as demonstrated by a fair
amount of mottling over the entire dragon. Some blending of the hexahedral
mesh over original detail in the triangle mesh is evident in areas of high con-
cavity, specifically the solid green areas near the joints around the legs, feet,
and face, as well as along the scales along the back of the dragon. Some of



Hexahedral Mesh Generation for Biomedical Models in SCIRun 17

Table 4. Table indicating volume changes resulting from conversion of the original
triangle mesh to a hexahedral mesh for the dragon model.

Volume (Triangle Mesh) Volume(Hexahedral Mesh) Difference Percent Change

11140235.34 11158459.36 18224.02 0.16%

these artifacts may be due to the grouping of the intersected hexes discussed
in the heading of this section. To improve the geometric fidelity of the hexahe-
dral mesh in regions of high convexity, the hexahedra that were intersected by
the triangle mesh were added to the group of hexahedra located in the interior
of the triangle mesh to capture additional geometric detail in the horns, facial
fans, and teeth. Including all the intersected hexes with the hexes interior to
the dragon enables an improved mesh that better captures high convexity de-
tails, but can be deleterious to some features in areas of high concavity. While
this process did not greatly impact the resulting mesh, improvements to this
algorithm can be made that may improve the overall geometric fidelity of the
model, as well as reduce the amount of questionable hexahedral elements in
the final model.

Table 4 gives a listing of the original volume enclosed by the triangles and
the final volume enclosed by the hexahedral mesh. The volume in the hexahe-
dral mesh is 0.16% larger than the volume enclosed by the original triangles
with the additional volume being gained largely in the concave regions around
the leg joints, mouth, and along the spines on the back of the dragon.

4.5 Brain Model

The original triangle mesh for the brain model is provided courtesy of INRIA
by the AIM@SHAPE Shape Repository (http://shapes.aim-at-shape.net/index.php).

Fig. 18. Geometry generated from original triangle facets shown in red (on the
left), and the geometry generated from the hexahedral facets is shown in green (in
the middle). An image where both sets of facets are overlapped is given on the right
to give an indication of the overall geometric fidelity of the hexahedral mesh.



18 Jason F. Shepherd and Chris R. Johnson

The hexahedral mesh of the brain model, shown in Figure 19 contains
644,221 hexahedra and was generated in SCIRun and optimized in CUBIT.
The mesh was generated first creating a regular grid of hexahedra that was
5% larger than a tight bounding box around the brain geometry. A uniform
element size was chosen using a comparable size from the original triangle
mesh. Two hexahedral sheets were then placed in the hexahedral grid using
the original triangle mesh (shown in Figure 20) as a guide, and the mesh was
then imported in CUBIT for mesh optimization.

In CUBIT, the quadrilateral mesh on the boundary was smoothed with
a centroidal-area smoother to improve the quality of the surface mesh. After
smoothing the quadrilateral mesh, the boundary nodes were fixed and the
hexahedral elements were smoothed with a Laplacian smoother, followed by
a mesh untangling operation on any hexahedra that may have been inverted
by the Laplacian smooth. Upon completion of the Laplacian smoothing oper-
ation, an optimization algorithm to improve the condition number of each of
the elements was performed to give the final results shown in Figure 21.

Table 5 gives a listing of the original volume enclosed by the triangles
and the final volume enclosed by the hexahedral mesh. The volume in the
hexahedral mesh is 1.85% larger than the volume enclosed by the original
triangles. The additional volume gain is noticeable in areas of concavity of the
original triangle mesh with the bulk of the additional volume being gained in
the loss of internal cavities in the brain.

Figure 22 displays the geometry derived from the facets of the original
triangle and hexahedral meshes (the facets of the original triangle mesh are
shown in red (on the left) and the facets from the hexahedral mesh are shown
in green (in the middle)). In this model, the geometric fidelity of the hexa-
hedral mesh is reasonable over the entire model as demonstrated by a fair

Fig. 19. Hexahedral mesh of the brain model, containing 644,221 elements.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 19

Fig. 20. Original triangle mesh of the brain model.

Fig. 21. Distribution of element quality for the brain model.

amount of mottling over the entire brain. However, loss of detail is apparent
in many of the brain folds and especially in some of the interior structure of
the brain as evident in Figure 23. The loss of the internal cavities accounts
for the bulk of the volume gain shown in Table 5.

The loss of detail and negative element quality can be attributed to a
couple of basic assumptions made in the current sheet insertion algorithm.



20 Jason F. Shepherd and Chris R. Johnson

Table 5. Table indicating volume changes resulting from conversion of the original
triangle mesh to a hexahedral mesh for the brain model.

Volume (Triangle Mesh) Volume(Hexahedral Mesh) Difference Percent Change

67855.98 69109.39 1253.41 1.85%

Fig. 22. Geometry generated from original triangle facets shown in red (on the
left), and the geometry generated from the hexahedral facets is shown in green (in
the middle). An image where both sets of facets are overlapped is given on the right
to give an indication of the overall geometric fidelity of the hexahedral mesh.

Fig. 23. Transparent view to show internal structure of the geometry generated
from original triangle facets shown in red (on the left), and the geometry generated
from the hexahedral facets is shown in green (in the middle). An image where both
sets of facets are overlapped is given on the right to give an indication of the overall
geometric fidelity of the hexahedral mesh.

First, the assumption is made that the shrunken hexahedral grid is directly
homeomorphic to the original triangle mesh. With proper element sizing, this
assumption is reasonable assuming that nonmanifold connections between el-
ements do not exist in the groups of elements around which the sheets are
inserted (i.e., regions where the boundary of the group of elements being pil-
lowed is ‘pinched’ together). The algorithm implemented in SCIRun detects
locations where nonmanifold edges exist, but does not detect nonmanifold
nodes. Normally, decreasing the size of the mesh will improve the geometric
fidelity and remove many, if not all, of the nonmanifold nodes. However, de-
creasing the size comes at a cost, and because we utilized uniform sizing and



Hexahedral Mesh Generation for Biomedical Models in SCIRun 21

Fig. 24. Locations of negative scaled Jacobian elements in the brain model.

based on the the number of elements in the original grid adding additional
elements to the mesh was not an option without increasing the amount of
memory on the machine generating the meshes. In the brain mesh, the ele-
ment sizing utilized resulted in 150 nonmanifold nodes that account for nearly
all of the negative Jacobian elements in the resulting mesh (shown in Figure
24).

A second assumption was that the intersected hexahedra should all go
to one side or the other. As discussed in the dragon example, depending on
which side the group of intersected hexes is added, dramatic improvements
in geometric fidelity can be realized. Because the isomorphism to the triangle
mesh is only requirement, better separation of the intersected hexes between
groups may be a more viable solution, especially if regions of high convexity
and concavity can be distinguished from the original triangles.

5 MULTISURFACE METHODS

In the previous section, we demonstrated hexahedral meshing of complex ge-
ometric solids that are defined by a single surface. In this section, we demon-
strate hexahedral mesh creation on geometric solids that are bounded by more
than one surface using a similar methodology as used earlier.



22 Jason F. Shepherd and Chris R. Johnson

Fig. 25. The highlighted curve in the image on the left could be considered a soft
curve, while the highlighted curve in the image on the right would be considered a
hard curve.

In solid modeling, a volume is bounded by one or more surfaces and a sur-
face is bounded by zero or more curves. A volume that is bounded by a single
surface with zero curves can be meshed using an isosurfacing methodology as
described in the previous section. In this section, we will focus on volumes
that are bounded by more than one surface, which in turn is bounded by
one or more curves. We will consider these curves to be discontinuities in the
boundary of the mesh. These curves can be categorized as follows (see Figure
25):

Definition: A soft curve on a volume is a curve on the boundary of the
volume where the transition from one surface to the next surface across the
curve is smooth, or nearly smooth.

Definition: A hard curve on a volume is a curve on the boundary of the
volume, where the transition from one surface to the next surface across the
curve is not smooth.

These definitions are somewhat ambiguous, and it is left to the reader
to determine when a transition is smooth versus when the transition is not
smooth. The techniques presented in this section will be general enough to
account for this ambiguity; however, the examples presented in this section
will, for the most part, ignore the cases of curves that can be defined nearly
unambiguously as being ‘soft curves’ on the boundary of the geometry.

5.1 Sharp Feature Capture

Whenever a hard curve is present in the boundary of a volume, it is advanta-
geous to the quality of the mesh and to the fidelity of the geometry to have
a string of mesh edges that align themselves with the curve. In a hexahedral
mesh, a string of mesh edges results whenever two sheets intersect. We can
control the placement of the edges resulting from the intersection of the two
sheets by controlling the locations of the sheet intersections. For example, in



Hexahedral Mesh Generation for Biomedical Models in SCIRun 23

Fig. 26. In locations where two sheets intersect, the resulting mesh topology con-
tains a string of edges that can be aligned with sharp features, or hard curves. In
this image, we ‘cut’ the face from the head model by inserting a planar sheet behind
the face. The inserted boundary sheet capturing the face (shown in the image on the
right), along with the newly inserted planar sheet (middle image) behind the face,
results in a mesh topology that contains a string of edges sufficient to produce a
sharp boundary where the two sheets intersect, as shown in the middle image above.

Figure 26 we place a planar sheet behind the face in the head model. The in-
tersection of the planar sheet (which also captures a new planar surface) with
the boundary sheet inserted earlier, produces a string of mesh edges that are
nicely aligned to create the sharp corner. This allows the face to be cut from
the head model.

By controlling where the sheet intersections occur, or manipulating the
conformation of the sheets such that intersections occur in the proximity of
hard curves, we can manipulate the hexahedral mesh to obtain a mesh topol-
ogy that mimics the geometric topology with the hard curves. Therefore, we
can use this methodology to enable hexahedral meshing of multisurface ge-
ometries by strategic insertion of the fundamental sheets needed to capture
the geometric surfaces, curves and vertices of the orginal model.

Additionally, by inserting multiple sheets (similar to the procedure used for
isosurfacing), we can construct complex geometries by performing Boolean-
like operations in the hexahedral mesh while still maintaining conformity with
all of the split-off pieces. In Figure 27 we demonstrate several successive spher-
ical cuts from a single hexahedral mesh of a cubical geometry. Where two
sheets intersect, the result is a string of mesh edges that align with the cut
enabling the sharp features in the resulting model to be recognized. Figure 28



24 Jason F. Shepherd and Chris R. Johnson

Fig. 27. By inserting spherical sheets into the geometry, we can perform Boolean-
like operations in the mesh, while maintaining the integrity of the hexahedral mesh.
At each of the boundary surfaces, the intersection of the spherical sheet with the
original planar sheets in the cuboid mesh is sufficient to produce a hexahedral mesh
with a string of mesh edges that can be utilized to capture the boundary disconti-
nuities resulting from the spherical cuts.

Fig. 28. The distribution of scaled Jacobian values for the cuboid geometry with
the spherical cutouts shown in Figure 27.

lists the resulting quality of each of the elements demonstrating the overall
high quality of the resulting mesh.

In SCIRun [1, 19], we utilize the same algorithm that was developed for the
hexahedral isosurfacing (as described previously) to affect the sheet insertion
process. By ensuring that another sheet already exists in the location where
we desire the hard curve to be placed, the addition of the new sheet results in
a string of mesh edges that can be moved to the location of the hard curve. A
similar methodology is used in the MeshCutting algorithm [4] as implemented
in CUBIT.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 25

The remainder of this section demonstrates hexahedral meshing on several
multisurface models. These results were obtained using both the algorithms
in SCIRun and CUBIT, with the exact recipe for generating the mesh be-
ing detailed in each respective section. The first example of a mechanical
part demonstrates the sheet insertion process for capturing both hard and
soft curves. Later examples demonstrate increased model complexity utilizing
sheet insertion and mesh cutting examples as implemented in both SCIRun
and CUBIT.

6 MULTISURFACE EXAMPLES

6.1 Mechanical Part

The hexahedral mesh of the mechanical part model, shown in Figure 29, was
generated in CUBIT and contains 27,486 hexahedra. The original geometry
contains two soft curves that are shown in Figure 30. In this example, we
will show how these soft curves can be captured utilizing the sheet insertion
techniques described earlier, while also generating a hexahedral mesh for the
volume.

The difficulty in generating a hexahedral mesh on this model using tradi-
tional methods is a result of the long quarter-cylindrical cut along one of the
edges of the model coupled with the quarter-circle soft curve on the base of
the model. These two features of the model prevent the use of a traditional
sweeping method. Other common methods for producing a hexahedral mesh
with a fair amount of structure require a fair amount of decomposition to the
model to develop recognizable hexahedral mesh primitives.

To generate the mesh for the mechanical part, we first generated a mesh
of a simpler version of the model that could be meshed utilizing a sweeping

Fig. 29. Hexahedral mesh of the mechanical part model showing images from the
side and bottom of the mesh.



26 Jason F. Shepherd and Chris R. Johnson

Fig. 30. Geometry for the mechanical part showing two soft curves: one in the
upper cylindrical section and a second on the base of the model.

Fig. 31. Flow chart showing the sheet insertion steps to create the mesh for the
mechanical part. The red surfaces represent hexahedral sheets that were inserted
into the simplified hexahedral mesh on the left to create the final hexahedral mesh
on the right.

algorithm [21, 23] (see Image A in Figure 31). Utilizing this mesh, we inserted
three additional sets of sheets into the mesh using the three triangle meshes
as guides shown in Image B, C, and D in Figure 31. These triangle meshes
were created directly on the original surfaces using an advancing front triangle
meshing algorithm available in CUBIT. Following the insertion of the sheets,
the inserted sheets from the triangle mesh in Image B was used to cut the
original geometry to produce the final geometry for the mechanical part and
recover the hard curves around the cylindrical section.

Following sheet insertion, the new mesh edges that were formed to cap-
ture the soft curves were fixed in place and a centroidal area smoothing of the
boundary was performed to improve quality of the surface mesh for the solid.
The hexahedral elements were then smoothed with a Laplacian smoother fol-



Hexahedral Mesh Generation for Biomedical Models in SCIRun 27

Fig. 32. Distribution of element quality for the mechanical part model.

lowed by optimization via the mean-ratio metric for each of the hexahedra
resulting in the mesh quality distribution shown in Figure 32

6.2 Skull Model

The skull model is provided courtesy of INRIA by the AIM@SHAPE Shape
Repository (http://shapes.aim-at-shape.net/index.php). The difficulty in gen-
erating this model with traditional methods is several fold. First, the original
model was constructed from a triangle mesh only, and no solid model de-
scription of this model is available. Therefore traditional decomposition with
solid modeling operations is not readily accessible. Second, since there are no
hard curves in the model traditional methods for determining a decomposi-
tion strategy for common hexahedral methods are not present. With com-
monly available methods for generating hexahedral meshes, this model would
be extremely difficult to produce.

The hexahedral mesh of the skull model, shown in Figure 33, was generated
in SCIRun and contains 19,330 hexahedra in the skull bone and an additional
34,815 hexahedra in the mesh of the cranial cavity. The mesh is completely
conformal throughout the model, but is separated into the two material blocks.
A transparent view of the geometry showing the bone and cranial cavity is
given in Figure 34.

This model was generated by placing a triangle mesh describing the ge-
ometry of the skull bone (minus the surface describing the cranial cavity) in



28 Jason F. Shepherd and Chris R. Johnson

a regular grid of hexahedra and inserting two hexahedral sheets using the tri-
angle mesh to guide the placement of the newly formed hexahedra. The mesh
exterior to the skull was discarded, and an additional set of sheets was added
using a triangle mesh describing the cranial cavity to control the placement of
the new hexahedral elements belonging to the inserted sheets. This generation
process is shown pictorially in Figure 35.

These two groups of hexahedral elements were then optimized in CUBIT,
by first, using a centroidal-area smoother on the exterior skull surface and the
shared surface of the cranial cavity. Laplacian smoothing was then utilized
on the hexahedra in both volumes. Additional mesh untangling and condition
number optimization were performed on the hexahedra in the hexahedral mesh
of the bone. The final mesh quality, dictated by the scaled Jacobian metric,
is shown in the distribution in Figure 36.

6.3 Goose16 Model

The goose16 model is provided courtesy of ANSYS [2]. The most significant
difficulty in generating a hexahedral mesh of the goose model using traditional
hexahedral algorithms is the circularity created in the geometry. This prohibits
common hexahedral mesh generation methods without doing a fair amount
of precision decomposition to the original model. Additionally, the branching
of the cylindrical cut-outs in the back make traditional sweeping methods
impossible to use on this model without creating degenerate hexahedra at the
branch points.

Fig. 33. Hexahedral mesh of the skull model. Bone (left) and cranial cavity (right)
meshes are shown separately.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 29

Fig. 34. Transparent view of the combined geometry generated from the facets of
the hexahedral mesh of the skull model.

The hexahedral mesh of the goose16 model, shown in Figure 37, was gener-
ated using sheet insertion algorithms in SCIRun and mesh cutting algorithms

Fig. 35. Pictorial flow chart demonstrating the mesh generation process for creating
the hexahedral mesh of the skull. Triangle meshes (pink) are utilized to guide place-
ment of hexahedral sheets into existing hexahedral meshes to achieve new meshes
that are conformal with the original solid geometry.



30 Jason F. Shepherd and Chris R. Johnson

Fig. 36. Distribution of element quality for the skull model (bone is shown in white
and cranial cavity is shown in black.

in CUBIT. The final mesh contains 57,114 hexahedra. The mesh quality dis-
tribution of scaled Jacobian measures for the goose16 mesh is shown in Figure
38.

The mesh was generated following the process flow shown in Figure 39.
Specifically, a simplified geometry that was sweepable was created and meshed
in CUBIT. A set of sheets was created and inserted into this mesh to fit the
geometry of the original model using a triangle mesh of this surface as a guide
in placing the hexahedral sheets. The elements outside the original volume
boundaries described by the newly inserted sheet were discarded.

On the backside of the goose model, a set of half-cylindrical sheets following
the pipe-like arm created in the previous step was added to this mesh with
the elements interior to this cylinder being discarded. An additional half-
cylindrical branch to the previous sheets was added to this, discarding the
elements interior to this set of sheets, resulting in the mesh shown in Image
H of Figure 39.

Finally, one last set of sheets was added near the top of the model to
produce the filleted region and finalize the mesh. Because this last set of
sheets was nearly tangent with the top of the surface near the middle of the
model, a line of doublet elements resulted where the two sheets meet. This
line of doublets was resolved with a boundary face collapse operation [22] to
join the two disjoint sheets into a single continuous sheet across the top of the
model.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 31

The resulting mesh was smoothed using a Laplacian smoother on the
boundary quadrilaterals and hexahedral elements, followed by a mesh un-
tangling operation and condition number optimization. The resulting mesh
quality distribution of scaled Jacobian measures is shown in Figure 38.

7 CONCLUSION

Biomedical simulations are often dependent on numerical approximation
methods, including finite element, finite difference, and finite volume methods,
to model the varied phenomena of interest. Meshes are used as input for com-
putational simulation, as well as, the geometric basis for which many of the
visualization results are displayed. Historically, the generation of these meshes
has been a critical bottleneck in efforts to efficiently generate biomedical sim-
ulations which can be utilized in understanding, planning, and diagnosing
biomedical conditions.

For some types of analyses, hexahedral meshes are desirable for reduced el-
ement counts and improved analysis fidelity. However, automated hexahedral
mesh generation algorithms are available for a more limited class of geome-
tries. Because of the limited class of geometries for which hexahedral meshes
can be built, a significant amount of time is often required to generating a
hexahedral mesh. For many models the process of creating a hexahedral mesh
can take several months for a generalized model [27, 28].

Fig. 37. Hexahedral mesh of the goose16 model showing images from the front and
back of the mesh, respectively.



32 Jason F. Shepherd and Chris R. Johnson

Fig. 38. Distribution of element quality for the goose16 model.

In this paper, we have built upon theory outlined in [22] to create an al-
gorithm that can be utilized for generating hexahedral meshes for biomedical
models. The algorithm uses a framework that is similar to Marching Cubes
approaches for generating triangle isosurfaces. The algorithm is also flexible
and can be utilized to build up more complex geometries while maintaining
geometric fidelity and mesh quality. We demonstrated this flexibility by cre-
ating meshes for biomedical and mechanical models of increasing complexity.
All of the results were verified using the Verdict mesh quality library [25]
and the scaled Jacobian measure for a hexahedral element and shown to have
acceptable quality suitable for use in subsequent simulations.

References

1. 2007. SCIRun: A Scientific Computing Problem Solving Environ-
ment, Scientific Computing and Imaging Institute (SCI), Download from:
http://software.sci.utah.edu/scirun.html.

2. ANSYS. ANSYS, http://www.ansys.com, January 2007.
3. S. E. Benzley, E. Perry, K. Merkley, and B. Clark. A comparison of all hexagonal

and all tetrahedral finite element meshes for elastic and elasto-plastic analysis.
In Proceedings, 4th International Meshing Roundtable, pages 179–191. Sandia
National Laboratories, October 1995.

4. M. J. Borden, J. F. Shepherd, and S. E. Benzley. Mesh cutting: Fitting simple
all-hexahedral meshes to complex geometries. In Proceedings, 8th International
Society of Grid Generation Conference, 2002.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 33

5. M. Brewer, L. Freitag-Diachin, P. Knupp, T. Leurent, and D. J. Melander.
The MESQUITE mesh quality improvement toolkit. In Proceedings, 12th In-
ternational Meshing Roundtable, pages 239–250. Sandia National Laboratories,
September 2003.

6. M. L. Bussler and A. Ramesh. The eight-node hexahedral elements in FEA
of part designs. Foundry Management and Technology, pages 26–28, November
1993.

7. A. O. Cifuentes and A. Kalbag. A performance study of tetrahedral and hex-
ahedral elements in 3-D finite element structural analysis. Finite Elements in
Analysis and Design, 12(3-4):313–318, 1992.

8. The CUBIT Geometry and Mesh Generation Toolkit, Sandia National Labora-
tories, http://cubit.sandia.gov/, 2007.

9. L. Freitag. On combining Laplacian and optimization-based mesh smoothing
techniques. AMD Trends in Unstructured Mesh Generation, ASME, 220:37–43,
1997.

10. L. A. Freitag and P. Plassmann. Local optimization-based simplicial mesh un-
tangling and improvement. International Journal for Numerical Methods in
Engineering, 49(1):109–125, September 10-20, 2000.

11. C. Johnson, R. MacLeod, S. Parker, and D. Weinstein. Biomedical comput-
ing and visualization software environments. In Communications of the ACM,
47(11):64–71, 2004.

12. T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving
mesh smoothing. ACM Transactions on Graphics, 22(3):943–949, 2003.

13. P. Knupp and S. A. Mitchell. Integration of mesh optimization with 3D all-
hex mesh generation, LDRD subcase 3504340000, final report. SAND 99-2852,
October 1999.

14. P. M. Knupp. Hexahedral and tetrahedral mesh shape optimization. Interna-
tional Journal for Numerical Methods in Engineering, 58(1):319–332, 2003.

15. P. M. Knupp. Hexahedral mesh untangling and algebraic mesh quality metrics.
In Proceedings, 9th International Meshing Roundtable, pages 173–183. Sandia
National Laboratories, October 2000.

16. W. E. Lorenson and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. Computer Graphics (Proceedings of SIGGRAPH ’87),
21(4):163–169, 1987.

17. M. Loriot. TetMesh-GHS3D v3.1 the fast, reliable, high quality tetrahe-
dral mesh generator and optimiser, http://www.simulog.fr/mesh/tetmesh3p1d-
wp.pdf, 2006.

18. MESQUITE: The Mesh Quality Improvement Toolkit, Terascale Sim-
ulation Tools and Technology Center (TSTT), http://www.tstt-
scidac.org/research/mesquite.html, 2005.

19. S. Parker, D. Weinstein, and C. Johnson. The SCIRun computational steering
software system. In E. Arge, A. Bruaset, and H. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages 1–40. Birkhauser Press, Boston,
1997.

20. C. Scheidegger and J. Schreiner. Afront,
http://sourceforge.net/projects/afront/, January 2007.

21. M. A. Scott, M. N. Earp, S. E. Benzley, and M. B. Stephenson. Adaptive
sweeping techniques. In Proceedings, 14th International Meshing Roundtable,
pages 417–432. Sandia National Laboratories, September 2005.



34 Jason F. Shepherd and Chris R. Johnson

22. J. F. Shepherd. Topologic and Geometric Constraint-Based Hexahedral Mesh
Generation. Published Doctoral Dissertation, University of Utah, May 2007.

23. J. F. Shepherd, S. A. Mitchell, P. Knupp, and D. R. White. Methods for multi-
sweep automation. In Proceedings, 9th International Meshing Roundtable, pages
77–87. Sandia National Laboratories, October 2000.

24. P. Vachal, R. V. Garimella, and M. J. Shashkov. Mesh untangling. LAU-UR-
02-7271, T-7 Summer Report 2002.

25. The Verdict Mesh Verification Library, Sandia National Laboratories,
http://cubit.sandia.gov/verdict.html, 2007.

26. V. I. Weingarten. The controversy over hex or tet meshing. Machine Design,
pages 74–78, April 18, 1994.

27. D. R. White, R. W. Leland, S. Saigal, and S. J. Owen. The meshing complexity of
a solid: An introduction. In Proceedings, 10th International Meshing Roundtable,
pages 373–384. Sandia National Laboratories, October 2001.

28. D. R. White, S. Saigal, and S. J. Owen. Meshing complexity of single part CAD
models. In Proceedings, 12th International Meshing Roundtable, pages 121–134.
Sandia National Laboratories, September 2003.



Hexahedral Mesh Generation for Biomedical Models in SCIRun 35

Fig. 39. Pictorial flow chart demonstrating the mesh generation process for creating
the hexahedral mesh of the goose16 model. Triangle meshes (red) are utilized to
guide placement of hexahedral sheets into the existing hexahedral mesh to achieve
a new mesh that is conformal with the original solid geometry.


